beste
Bestaat er ergens een stelling (of een verwijzing naar ergens) die ons vertelt wanneer een matrix diagonaliseerbaar is?
dank
AA
27-12-2009
Beste Ali
We noemen een matrix A diagonaliseerbaar als er een reguliere matrix P en een diagonaalmatrix D bestaat zodat A = PDP-1. Er zijn dan verschillende karakterisaties, stellingen, nodige en/of voldoende voorwaarden mogelijk.
Wanneer een nxn-matrix A, n verschillende eigenwaarden heeft, is A diagonaliseerbaar. Dit is een voldoende, maar geen nodige voorwaarde.
Ook als je minder eigenwaarden hebt, kan A nog steeds diagonaliseerbaar zijn. De som van de dimensies van de eigenruimten, moet gelijk zijn aan n.
Dit is equivalent met de eis dat de meetkundige multipliciteit van elke eigenwaarde gelijk moet zijn aan de algebraïsche multipliciteit.
Of nog: de matrix A moet n lineair onafhankelijke eigenvectoren hebben.
mvg,
Tom
td
27-12-2009
#61215 - Lineaire algebra - Student universiteit