Een driehoek heeft als omtrek 30 meter en als opp 30 m2. Bereken de rechthoekszijden.
Ik weet niet hoe ik dit moet omvormen naar een tweedegraadsvergelijking.Louis
6-12-2009
Noem de rechthoekszijden even a en b. De schuine zijde is dan Ö(a2+b2)
De omtrek is dan a+b+Ö(a2+b2)=30
De oppervlakte is gelijk aan 1/2ab=30, dus ab=60, dus b=60/a.
We gaan nu a+b+Ö(a2+b2)=30 herschrijven om die wortel kwijt te raken.
We maken ervan:
Ö(a2+b2)=30-(a+b)
Beide zijden kwadrateren levert:
a2+b2=(30-(a+b))2
Dus
a2+b2=900-60(a+b)+(a+b)2
a2+b2=900-60a-60b+a2+2ab+b2
Dus
0=900-60a-60b+2ab
Invullen van b=60/a levert dan:
900-60a-3600/a+120=0
Dus
-60a-3600/a+1020=0
Vermenigvuldigen met a levert dan
-60a2-3600+1020a=0
Delen door -60 levert dan:
a2-17a+60=0.
(a-5)(a-12)=0
a=5 of a=12
Bij a=5 hoort b=60/5=12 (en bij a=12 hoort b=60/12=5.
Dus de rechthoekszijden zijn 5 en 12.
hk
6-12-2009
#61013 - Vergelijkingen - 2de graad ASO