WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Limiet x naar 0

Hallo,

ik ben voor een opdracht voor school op zoek naar de volgende twee limieten, maar kom er niet uit:

1:
lim sin(2x)*cos(3x)/4x
x-0

2:
lim 1-cos(4x)/x2
x-0

Ik hoop dat iemand kan helpen!
Alvast bedankt!

Ilse
26-9-2009

Antwoord

Hallo

In beide gevallen moet je gebruik maken van de eigenschap:

lim sin(z)/z = 1
z$\to$0

met z een willekeurige hoek.

Voor opgave 1 schrijf je de breuk als :

sin(2x)/2x . cos(3x)/2

De limiet van de eerste breuk is dus 1, want als x$\to$0 dan 2x$\to$0
De limiet van de tweede breuk is geen probleem (= 1/2)

In de tweede opgave vermenigvuldig je teller en noemer met 1+cos(4x)

De teller wordt dan 1-cos2(4x) = sin2(4x)

De breuk sin2(4x)/x2 = 16.sin2(4x)/(4x)2.
Hierop kun je de vermelde eigenschap toepassen.

De limiet van de breuk 1/(1+cos(4x) wordt 1/2

Je vindt dus als eindlimiet : 8

Alles duidelijk?

LL
26-9-2009


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#60245 - Limieten - Student universiteit