WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Onbepaald integreren

Toon aan dat:Int 1/(ez + 1) dz,tussen 0 en oneindig = ln 2. De integraal bestaat voor deze waarden. Omdat z = oneindig en geen element van Df definieren we de bepaalde integraal: lim b®oneindig Int 1/(ez +1)dz tussen 0 en b.
Als we stellen dat t=ez + 1, dan dt=ez dz. Daar uit volgt: dz=1/ez dt. En hier ontstaat nu mijn probleem, want hoe ga je verder? Ik heb voor p.i.gekozen, maar dan blijkt alles (voor en na het = teken)op nul uit te komen en heb je dus niets bereikt! Breuksplitsen heb ik ook overwogen, maar dat gaat hier niet volgens mij? Wie helpt
mij weer op het goede spoor? Bij voorbaat heel hartelijk dank!

Johan uit de Bos
11-8-2009

Antwoord

dag Johan,

Omdat t = ez + 1, geldt dus ook: ez = t - 1
De integrand wordt dus 1/t · 1/(t-1)
Deze kun je met breuksplitsen verder uitwerken.
succes,

Anneke
12-8-2009


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#59940 - Integreren - Student hbo