WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

Riemann

Oppervlakte benaderen met Riemann-som
gegeven is de functie f(x) = Öx
benader de oppervlakte van het gebied onder de grafiek op het interval [0,16] met behulp van een Riemann-som, gebruik 0,1 als breedte van de deelintervallen.

Vervolgens maken ze een ondergrens een een bovengrens maar hoe komen ze aan het nummer 160? (1)

Hoe moet je dit invoeren op je GR? (2)

Céline
30-5-2009

Antwoord

(1) Het interval [0,16], wordt onderverdeeld in stukjes van lengte 0,1. Hoeveel rechthoekjes krijg je op die manier?

(2)Je hebt dus 160 rechthoekjes. Het n-de rechthoekje heeft breedte 0,1. Wat is de bijbehorende hoogte, noem dat h(n)? De op van het n-de rechthoekje is dus O(n)=0,1ˇh(n). Deze moet je optellen voor n=1 tot n=160.
Op de GR rekenen je dat uit door bijvoorbeeld u(n+1)=u(n)+O(n), met u(0)=0.

Succes!

Bernhard
31-5-2009


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#59470 - Integreren - Leerling bovenbouw havo-vwo