WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Partieel integreren

Ik zit mte de volgende integraal:
$\int{}$x2 cos$\pi$x dx

Nou zeg ik dat
U = x2
dU = 2x
dV = sin$\pi$x/x
V = cos$\pi$x dx

Nou kom ik hier op uit
x2·sin$\pi$x/$\pi$ - $\int{}$sin$\pi$x/$\pi$ · 2x dx

Het boek zegt dit:
x2·sin$\pi$x/$\pi$ - 2/$\pi\int{}$xsin$\pi$dx

Ik geloof niet dat ik dat zie.

Daarna gaan ze verder door opnieuw alles te defineren:
U = x
dU = dx
V = -cos$\pi$/$\pi$
dV = sin$\pi$x dx

= x2·sin$\pi$x/$\pi$ - 2/$\pi$(-xcos$\pi$x/$\pi$ + 1/$\pi\int{}$cos$\pi$x dx)
Het eerste deel zie ik nog wel enigzins maar bij die integraal ben ik hem weer kwijt.

= 1/$\pi$ x2 sin$\pi$x + 2/$\pi$2 x cos$\pi$x - 2/$\pi$3 sin$\pi$x + C

En hier zijn ze me ook weer kwijt

Ik denk dat het vooral door al die goniometrische dingen komt dat ik door de bomen het bos niet meer zie. Misschien handige tips ernaast?

D
22-4-2009

Antwoord

Het gaat mis bij je eerste partiele integratie. Je kiest eigenlijk u en dv, zodat $\int{}$udv=uv-$\int{}$vdu

Je kiest je dv al verkeerd, waardoor je v ook niet klopt. Als je dit verbetert, zal je wel op het goede antwoord uitkomen.

Bernhard
23-4-2009


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#59111 - Integreren - Student universiteit