WisFaq!

\require{AMSmath} geprint op maandag 25 november 2024

Re: Singuliere waarde van een matrix

Er is een zogeheten singuliere waarden decompositie van een matrix. Hierbij maak je gebruik van die singuliere waarden om je matrix te ontbinden in twee fijnere matrices, namelijk als volgt:

Zij A een willekeurige matrix. De singuliere waarden worden zoals hierboven gezegd gedefinieerd als volgt:
Zij s21,..., s2n de eigenwaarden van AT. Dan heten s1,..,sn(allemaal positief) desinguliere waarden van A.

Er bestaan dan orthogonale matrices Q1 en Q2 zodanig dat QT1A Q2= diag(sj).

Bewijs hiervan zal ik hier niet geven. Is niet heel erg lastig, maar zoek eens op Singular Value Decomposition met google of iets dergelijks.

R
17-3-2009

Antwoord

Dank je wel voor deze aanvulling.
groet,

Anneke
17-3-2009


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#58685 - Numerieke wiskunde - Student universiteit