WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Differienteren naar logaritme

Hallo

Ik ben bezig met exponentiele en logaritmische functies en ben nu bij het natuurlijk logaritme. Deze moet ik gaan differienteren, maar ik snap niet hoe ze dat nou aanpakken. Stel:
f(x) = 5·2x2+x
Dan is het antwoord 5·2x2+x·ln(2)·(2x+1)

Ik kom niet verder dan:
5·2x2+x·ln(2)·2x

En waarom willen ze eigenlijk dat je in een formule zonder logaritmen naar een afgeleide gaat met een logaritme?
Ik hoop dat u mij snel kunt helpen! Donderdag is de toets..

groetjes

marieke
21-1-2009

Antwoord

Zoals je vermoedelijk wel weet is de afgeleide van ex gelijk aan ex.
Nu die van 2x.
Schrijf 2x als (eln(2))x=ex·ln(2).
Dan wordt (met de kettingregel) de afgeleide hiervan:
ln(2)·ex·ln(2)=ln(2)·2x.

Dus onthoud: f(x)=ax = f '(x)=ln(a)·ax.
(Dat willen ze niet, dat is gewoon zo)

Nu
f(x)=5·2x2+x=5·2u, met u=x2+x.
Dan met de kettingregel:
f '(x)=5·ln(2)·2u·u'(x)=5·ln(2)·2x2+x·(2x+1)
(u '(x)=2x+1)

hk
21-1-2009


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#58039 - Differentiëren - Cursist vavo