g'(x) = 2cos(2x) + sin(x)
= 2- 2 sin.2..(x) + sin(x)
= -2 sin.2..+ sin(x) + 2
Stel sin(x) = y
-2y.2..+ y + 2 = 0
y = (-1 + Ö17) :-4 v y = (-1 - Ö17) : -4
Deze laatste voldoet niet.
De andere y geeft als oplossing voor x= 4,04 v 5,38 en de 2 twee andere toppen vind ik niet!
Wat doe ik fout???Katrijn
10-12-2008
g(x)=sin(2x)-cos(x) met Df=[0,2p]
g'(x)=2cos(2x)+sin(x)
g'(x)=0 voor:
2cos(2x)+sin(x)=0
2(1-2sin2(x))+sin(x)=0
2-4sin2(x)+sin(x)=0
Neem y=sin(x)
2-4y2+y=0
y-0.5930703308 of y0.8430703308
En dat geeft twee oplossingen die wel voldoen... die elk ook weer twee oplossingen geven op het domein, dus in totaal vier oplossingen.
...en dan lukt het vast.
Die ' y0.8430703308' geeft je de 'gezochte' x-waarden.
WvR
10-12-2008
#57506 - Goniometrie - Leerling bovenbouw havo-vwo