Al een ganse dag probeer ik dit vraagstuk op te lossen. Ik heb aan iedereen al hulp gevraagt maar ofwel kunnen ze me niet helpen ofwel willen ze niet.
In een cirkel met straal 3 cm construeren we een rechthoek waarvan de vier hoekpunten op de cirkel liggen. Geef zijn grootst mogelijke oppervlakte.
Hopelijk kan iemand mij hier helpen.
grtssara
5-11-2008
Volgens mij is die rechthoek een vierkant met diagonaal 2·3=6. Waarna je de oppervlakte makkelijk kunt uitrekenen.
Als je niet weet dat het een vierkant zou moeten worden kun je als volgt te werk gaan:
je weet dat de diagonaal van de rechthoek gelijk is aan 2·de straal van de cirkel.
Noem de zijden van de rechthoek x en y.
Je weet dan dat y=Ö(36-x2) (Pythagoras)
De oppervlakte O is gelijk aan x·y=xÖ(36-x2)
Dus nu heb je een functie O(x)=xÖ(36-x2) waarvan je het maximum moet bepalen.
Differentieren, nul stellen etc.
Moet kunnen.
hk
5-11-2008
#57058 - Oppervlakte en inhoud - 3de graad ASO