Beste Wisfaq,
Bij deze wil ik reageren op de bovenstaande vraag.
Ik heb een simulatiemodel in Excel waarbij met de door u beschreven methode nummeriek differenteer:
y[t] = (x[t]-x[t-$\Delta$t])/$\Delta$t
Hierbij is tijdstap $\Delta$t een eindige waarde en wordt bepaald door de samplefrequentie. Ik heb ervoor gezorgt dat de samplefrequentie meer dan 2 maal kleiner is als dan de systeemfrequentie.
Maar nu wil het dat bij een bepaalde input het uitgangssignaal onstabiel wordt. Met name als de invloed van de bovenstaande vergelijking groter wordt.
Mijn vraag aan u is, of er methoden zijn om het differentiëren zodanig aan te pakken dat deze niet meer instabiel wordt. Op internet heb ik wel het een en ander over integreren gevonden, maar helaas niet over differentiëren. Ik hoop dat u mij verder kunt helpen, alvast bedankt voor de moeite!Gerwin
30-8-2008
Je kunt een heleboel dingen bedenken om je uiteindelijke resultaat wat netter te differentieren. Je zou bijvoorbeeld punten meer naar links en naar rechts kunnen meenemen in je berekening van de afgeleide. Zolang je er uiteindelijk maar voor zorgt dat voor de limiet van Dt naar 0 je uitdrukking overeenkomt met de afgeleide (als in het antwoord waar jij op reageert), dan is er in principe geen probleem.
Met jouw definitie van y[t] zou je de afgeleide ook kunnen uitrekenen met
z[t]=(y[t+1]+2y[t]+y[t-1])/4
(Controleer even of dit inderdaad de afgeleide geeft voor Dt naar 0, want ik schud hem nu uit mijn mouw).
Het beste is uiteindelijk om gewoon $\Delta t$ kleiner te kiezen.
Bernhard
5-9-2008
#56350 - Numerieke wiskunde - Iets anders