WisFaq!

\require{AMSmath} geprint op donderdag 21 november 2024

d<0 maar x (x=v-u) is reeel

x3-x=-0.375 (x3+ax=b)
a=3uv, b=v3-u3
x3-3uv x=v3-u3 (x+u=v)
3uv=-1
v3-u3=-0.375
3uv=-1 dus, u=-1:3v
u=-1:3v invullen in v3-u3:
v3-(-1:3v)3=-0.375
v3+1:27v3=-0.375
vermenigvuldigen met v3:

(v3)2+1:27=-0.375v3
(v3)+0.375v3+1:27=0

v3 opschrijven als y:
y2+0.375y+1:27=0

abc formule toepassen:

d=-0.3752-4×1×1:27
d<0

naar aanleiding van antwoord op mijn vorige vraag (ik loop nog steeds vast/3e graads vergelijking) heb ik een vraag: hoe moet ik nu verder rekenen. dat ik een complexe waarden moet krijgen voor v en u zodat x=v-u reeel is dat snap ik maar hoe krijg ik die dan. ik hoop dat ik het nu eindelijk ga begrijpen want ik word helemaal gek van deze som!!!!bedankt doei doei
groetjes laia

laia
25-11-2002

Antwoord

Hoi,

Dit is het vervolg van ik loop nog steeds vast/3e graads vergelijking.

In het plaatje vind je wat Maple geeft als resultaat voor je 6-de graadsvergelijking in v:

q5546img1.gif
.

Je kan ze bepalen door de complexe wortels van y2+0.375y+1/27=0 uit te rekenen en dan de derde-wortels te trekken.

Het eerste doe je met de abc formule: d=(0.375)2-4/27, de wortels zijn (-0.375±i-d)/2. Dit kan je dan best in Euler notatie omzetten (r.eq) en dan kan je voor elke y-waarde 3 3de wortels gaan berekenen... Leuk is anders, praktisch ook... Daarna moet je de overeenkomstige u-waarden berekenen met u=-1/3v. Uiteindelijk zal je zien dat telkens v-u dezelfde reële waarde voor x levert. Je kan je dus beperken tot 1 waarde voor y en 1 derde wortel...

Groetjes,
Johan

andros
25-11-2002


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#5546 - Complexegetallen - Leerling bovenbouw havo-vwo