WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Re: Bissectrice bewijzen

Hallo Lieke,

Het meeste snap ik wel / ga ik wel snappen.
De enige vraag die ik heb is:

Als je hebt bewezen dat BQ//MP, en BQ is de bissectrice van de gewone driehoek, en MP 'begint' in het midden van AC, dat MP dan een bissectrice van de hulpdriehoek is?

Op een andere manier:
Door te bewijzen dat BQ//MP heb je bewezen dat MP net zoals BQ een bissectrice is? (Dat verband ken ik namelijk nog niet)

Bedankt!

Sven
6-5-2008

Antwoord

Beste Sven,
Daarvoor maak je gebruik van het feit dat ÐKLM=ÐABC.
(Volgt uit evenwijdigheid van MK en BM)
Dan geldt ook: ÐKMP=ÐAPM=1/2ÐKML.
ÐABQ=1/2ÐABC en ÐKLM=ÐABC
®PM//BQ.
Achteraf gezien kan het verdere bewijs nog korter en denk ik inzichtelijker:
BQ is bissectrice van ÐB®AQ/AB=CQ/BC en dus ook (door optellen):
AQ/AB=AC/(AB+BC).
PM//BQ®AQ/AB=AM/AP
AM=AC/2 (zo gekozen).
Combinatie van deze regels geeft: AP=(AB+BC)/2, ofwel AP=BC+PB.
Succes, Lieke.

ldr
7-5-2008


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#55456 - Analytische meetkunde - Leerling bovenbouw havo-vwo