stel de vergelijking op van de raaklijnen aan de cirkel c=(x-5)2 +y2=10, die evenwijdig zijn met de rechte a=3x-y-8=0
ik snap nie goed hoe ik er aan moet beginne...jorien
1-3-2008
Dag Jorien,
Voor een Vlaming heb je een behoorlijk Hollands taalgebruik
Maar goed. Het grootste probleem is, denk ik, de raakpunten vinden. De raaklijn lukt dan wel. De rechte a heeft in ieder geval een vaste richtingscoefficient (die heet ook wel hellingsgetal of dy/dx). Je zoek nu de punten op de cirkel waar de richtingscoefficient hetzelfde is.
Hoe je dit uiteindelijke doet hangt af van de manier waarop je dit geleerd hebt. Eén methode is: y schrijven als functie van x en dan de afgeleide uitrekenen. Vervolgens kijken wanneer die gelijk is aan de richtingscoefficient van de lijn. (je moet wel opletten dat je twee functies nodig hebt, één voor de bovenkant van de cirkel en één voor de onderkant)
Waarschijnlijker is dat je hebt geleerd te werken met differentialen. Daarmee kun je eenvoudiger dy/dx uitrekenen op ieder punt van de cirkel. Vervolgens ga je weer op zoek naar de punten op de cirkel waar die gelijk is aan de richtingscoefficient van de lijn.
Ik hoop dat het zo lukt. Als je meer wilt weten, vertel dan even wat over de manier waarop je dit soort problemen heb geleerd aan te pakken.
Groet. Oscar.
os
1-3-2008
#54621 - Analytische meetkunde - 2de graad ASO