WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Moeilijke logaritmische en exponentiële vergelijkingen oplossen

Bedankt voor het antwoord op een vorige vraag maar hebnog 2 vgln die niet lukken
1) log43Ö(x-10)=log64(x-1)+1/3
Deed reeds volgende stappen:
log(x-1)/3log4=log(x-1)/3log4+log4 maar dan valt mijn onbekende weg en er is wel degelijk een oplossing nl.2

2) 2logx9-4=4logxÖ3+2logx(3x)
hier weet ik eigenlijk niet goed hoe te beginnen want ik dacht log van elke term maar dat mag zeker zo maar niet met die optelling en aftrekking?

Vanneste Diana
29-1-2008

Antwoord

Gebruik in je eerste probleemopgave eens de volgende eigenschap van logaritmen: 4log(A) = 64log(A3).
Zowel het grondtal als het argument zijn dus tot de derde macht verheven.

In je tweede opgave kun je wellicht hetzelfde toepassen, maar ik zie een grondtal 2 en een grondtal 4 staan en tevens staat er nog een lager geschreven letter x bij. Wat dat laatste betekent, weet ik niet.

MBL

MBL
30-1-2008


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#54133 - Logaritmen - 3de graad ASO