WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Herleiden

Hallo,
Ik heb nogal moeite met goniometrie, voornamelijk bij vragen waarbij je formules moet herleiden. Zo kom ik niet goed uit de volgende vraag:

De beweging van een punt in het Oxy-vlak wordt voor 0t2p gegeven door:
x = cos 15t + cos 2t
y = sin15t + sin 2t

a. Toon aan, dat de bewegingsvergelijkingen kunnen worden herleid tot
x = 2 cos (6,5t) · cos (8,5t)
y = 2 cos (6,5t) · sin (8,5t)

b. Bij het doorlopen van de baan voor 0 t 2p passeert het punt een aantal keren (0,0). Bereken dit langs algebraïsche weg.

Vooral de laatste vraag vind ik lastig. Is hier ook een stappenplan voor of iets dergelijks?
Alvast bedankt voor de hulp,
Margot

Margot
13-1-2008

Antwoord

Op je formulekaart staat een aantal somformules...

q53863img1.gif

Nu moet gelden dat:

2cos(6,5t)·cos(8,5t)=0
2cos(6,5t)·sin(8,5t)=0

Wanneer is dat nu het geval!?
Als cos(6,5t)=0 dus:



Zie 6. Goniometrische vergelijkingen oplossen

Daarmee zou het (zonder al te veel moeite) moeten lukken, hoop ik...

WvR
13-1-2008


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#53863 - Goniometrie - Leerling bovenbouw havo-vwo