WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Re: Snijlijn bepalen van twee vlakken

Oke, Ik denk er iets uit op te kunnen maken nl. het volgende:
Het homogene gedeelte (reeds verteld en gelijkgesteld aan nul) staat dus voor het vlak g. als we nu een vectorvoorstelling willen hebben nemen we het verschil tussen vector m en n. zodat:
g = (1,1,1)T-(2,1,-3)T=(-1,0,4)T zodat de vector voorstelling uitkomt op:
x=1-t, y=-2 en z=4t (waarbij t de parameter is)
Is dit een mogelijke vector voorstelling?

Reinier
6-1-2008

Antwoord

Het gevonden vlak is 2x+y-3z=0 en heeft normaalvector (2,1,-3).
Nu moet je twee onafhankelijke richtvectoren zoeken en die vind je door ervoor te zorgen dat het inproduct met de normaalvector gelijk is aan 0.
Er is een oneindige keuzevrijheid. Neem bijvoorbeeld (-1,2,0) en ga na dat het inproduct met de normaalvector gelijk is aan 0.
Zoek nu nog een tweede (maar geen veelvoud van de mijne!) en je bent er.
Je vv. wordt dan (x,y,z) = (0,0,0) + $\lambda$(-1,2,0) + $\mu$(jouw vector).

MBL

MBL
7-1-2008


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#53739 - Lineaire algebra - Student hbo