WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Kortste afstand tussen kruisende rechten

Gegeven de punten P(2,1,3), Q (1,2,1), R(-1,-2,-2) en S (1,-4,0) Bepaal de kortste afstand tussen de kruisende rechen PQ en RS

Oplossing voor zover ik kan:

Ik wil de vgln opstellen van het vlak evenwijdig aan RS door PQ dus zoek ik de normaalvector die ik vind met het uitproduct te nemen van de richtingsvectoren van PQ en RS

richtingsvector PQ = (1-2, 2-1,1-3)= (-1,1,-2)
richtingsvector RS = (1+1, -4+2,0+2)=(2,-2,2)

Het uitproduct
(-1,1,-2) x (2,-2,2) = (2-4,2-4,2-2) = (-2,-2,0)

Ik ken dus de normaalvector op het vlak en nu?

Blue
5-12-2007

Antwoord

Hallo

Het vlak door PQ en evenwijdig met RS noemen we a.
Je kent dus de vergelijking van het vlak a (x+y-3=0)

De gezochte afstand is nu de afstand van R tot het vlak a (3Ö2)
Als controle kun je ook de afstand van S tot het vlak a berekenen.

LL
5-12-2007


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#53367 - Analytische meetkunde - 3de graad ASO