Ik zit in het vijfde jaar wetenschappelijke B.Ik heb een probleem met de volgende oefening.
x^(log(3x))/(2x)^(log(2x))=5
(10^(log(x))(log(3x)/(10^(log(2x))(log(2x) L4: g^gloga=a
(10)^(log(x)(log(3x))-(log(2x)(log(2x)=5 10^a/10^b=
10^a-b Hoe kan ik dit verder oplossen ?
Alvast bedankt.
orestis
25-11-2007
Hoi Orestis,
Het kan zo. Gebruik 5 = 10^log(5), stel vervolgens de exponenten gelijk en werk de vergelijkingen uit. Je krijgt een tweedegraads vergelijking in log(x).
Groet. Oscar
os
26-11-2007
#53206 - Logaritmen - 3de graad ASO