WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Maximum van een formule met veel machten

Mijn vraag is: Voor welke p [0,1] neemt de functie l=p5(1-p)8 een maximum aan?
Ik weet al dat je de afgeleide moet bepalen en dan gelijkstellen aan nul, maar ik loop steeds vast! Help mij!
Dank u...

Amber
24-10-2007

Antwoord

Dus f(p)=p5(1-p)8
f '(p)=5p4(1-p)8+p5·8(1-p)7·-1=
5p4(1-p)8-8p5(1-p)7

Nu zie je dat beide termen de factoren p4 en (1-p)7 bevatten.
Deze kun je dus buiten haakjes halen.
Je krijgt:
p4(1-p)7(5(1-p)-8p)=
p4(1-p)7(5-13p)

Volgens mij zou het nu verder wel moeten lukken.

hk
24-10-2007


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#52661 - Differentiëren - Leerling bovenbouw havo-vwo