WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Maximale oppervlakte van een driehoek

Hey, ik heb een probleem:

Ik heb een driehoek, met zijde a en de som van de twee andere zijden is constant (=k). Nu moet ik bewijzen dat de oppervlakte van de driehoek maximaal is als de rechthoek gelijkbenig is, en ik moet de maximale oppervlakte in functie van a en k zoeken.

Ik heb al gevonden dat als de driehoek gelijkbenig is, dat de gelijkbenige zijden gelijk zijn aan k/2, en zo heb ik de hoogte kunnen vinden met pythagoras: h = Ö((h/2)2-(a/2)2), en de oppervlakte is dus (a · h) / 2.

Maar hoe moet ik nu verder?

Alvast bedankt

Jeroen
13-10-2007

Antwoord

Daar ben je natuurlijk niet zo veel mee. Je gaat er al meteen van uit dat de driehoek gelijkbenig is.

Het "veranderlijke" is hoe je de k verdeelt over de twee zijden. Noem dus bijvoorbeeld de ene zijde x en de andere k-x. Probeer nu voor die algemene situatie de hoogte te bepalen op de zijde met lengte a. Die hoogte h zal natuurlijk op zich weer afhangen van x (anders was de oppervlakte altijd dezelfde).

Aangezien a constant is, zal de maximale oppervlakte overeenkomen met de maximale hoogte. Bepaal die door de uitdrukking voor h(x) af te leiden.

cl
13-10-2007


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#52478 - Vlakkemeetkunde - 3de graad ASO