WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

Cirkel rond (0,0)

Ik heb een parametervoorstelling:

x = 2sin(a ¡Ñ cos(t))
y = 2cos(a ¡Ñ cos(t))

Voor elke a geldt 0.

Hoe kan ik vredesnaam aantonen dat deze parametervoorstelling rond het punt 0,0 ligt. Ik heb al vernomen dat ik sin2(x)+cos2(x) = 1 voor elke waarde van xƒnmoet gelden.

Maar nu weet ik nog niet hoe ik moet aantonen dat deze parametervoorstelling rond (0,0) ligt.

wout
29-5-2007

Antwoord

Dag Wout,

Je mag ook gewoon reageren op een antwoord hoor. Als je de vraag steeds opnieuw stelt gaat het een beetje lang duren.

Een cirkel rond (0,0) herken je doordat alle punten (x,y) op dezelfde afstand van (0,0) liggen. Wat je dus moet doen is de afstand tussen (0,0) en (x,y) uitreken. Als daar voor alle punten hetzelfde getal uiktkomt heb je bewezen dat de punten op een cirkel liggen. Om de afstand tussen twee punten uit te rekenen gebruik je de stelling van Pythagoras.

Laat een weten hoever je hier mee komt. Dan zal ik zien hoe ik je verder kan helpen. Groet. Oscar

os
29-5-2007


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#51043 - Goniometrie - Leerling bovenbouw havo-vwo