Hallo Hans,
Alternatief zou toch ook kunnen :
de teller 1=sin2(x/2)+cos2(x/2) , de noemer te schrijven als 2sin(x/2)cos(x/2) en dan de teller te splitsen en te vereenvoudigen op de noemer.
Dus ò((sin(x/2))/2cos(x/2)+((cos(x/2))/2sin(x/2)dx
=ò1/2tg(x/2)dx+ò1/2cotg(x/2)dx
=-lncos(x/2)+lnsin(x/2)+C
=lntg(x/2)+C
Ik vind deze methode wat eenvoudiger,maar je moet ern aan denken van de hoofstelling goniometrie toe te passen en te splitsen...
Vriendelijke groeten,
Rik Lemmens
29-5-2007
Kan ook,
ik vond het aardige aan mijn methode dat je er geen halve of dubbele hoeken voor nodig hebt.....
hk
29-5-2007
#51037 - Goniometrie - Ouder