WisFaq!

\require{AMSmath} geprint op woensdag 4 december 2024

Nilpotente Matrix

Hey,

Ik moet alle 2 x 2 matrices bepalen die nilpotent zijn met index 2.

Nilpotente matrix:
Indien voor een vierkante matrix A een getal verschillend van 0 bestaat, waarvoor geldt dat An = O, dan is A een nilpotente matrix met index n.

Alvast bedankt,

Jeroen
28-2-2007

Antwoord

Definieer A heel algemeen als
a b
c d

En stel dan de vier voorwaarden op die moeten gelden als A2 nul moet zijn.
In twee van de vier voorwaarden kan je een factor (a+d) afzonderen. Onderscheid dan twee gevallen: a+d¹0 (dit geeft geen oplossingen) en a+d=0. Binnen dat laatste kan je weer twee gevallen onderscheiden, namelijk a=d=0 (geeft je twee soorten oplossingen, waarbij telkens één van de niet-diagonaalelementen verschilt van nul); en a=-d¹0. En dat laatste zou je uiteindelijk de oplossingen moeten geven van de vorm
±Ö(bc)b
c-±Ö(bc)

waarbij b en c niet allebei nul zijn.

Groeten,
Christophe.

Christophe
28-2-2007


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#49446 - Lineaire algebra - 3de graad ASO