Hey,
Gegeven is:s(n)=1+1/2+1/3+...+1/n
Nu moet ik bewijzen dat s(1)+s(2)+...+s(n-1)=n新(n)-n.
Hoe moet ik hieraan beginnen?
Alvast bedankt,Jeroen
7-2-2007
Dag Jeroen,
Dit is typisch een voorbeeld van een bewijs met inductie. Dus doe eerst de inductiestap (dus vul n=2 in, dat is de eerste n-waarde waarvoor de bewering zinvol is, en controleer dat de bewering klopt, dit is heel eenvoudig).
Daarna komt de inductiestap. Stel dat je bewering geldt, dus je mag uitgaan van
s(1)+s(2)+...+s(n-1)=n新(n)-n (*)
en je moet deze regel bewijzen, maar dan voor n+1 ipv voor n, dus je moet bewijzen:
s(1)+s(2)+...+s(n)=(n+1)新(n+1)-(n+1)
Gebruik nu (*) in het linkerlid, je krijgt dan
n新(n)-n + s(n) = (n+1)新(n+1)-(n+1)
Gebruik in het rechterlid nu de definitie van s: je weet dat s(n+1)=s(n)+1/n+1. Dus je te bewijzen wordt:
n新(n)-n + s(n) = (n+1)新(n)+(n+1)/(n+1)-(n+1)
n新(n)-n + s(n) = (n+1)新(n)-n
en dit klopt duidelijk.
Christophe
7-2-2007
#49106 - Bewijzen - 3de graad ASO