Extreme waarden bij een breuk. Ik heb de extreme waarden:
f'(x)=[(x-6)(x+3)2]/3x2
f'(x)= 0 als x=6 v x=-3 en x is niet 0.
Dus de nulpunten zijn 6 en 0? Ik moet een tekenschema maken. Moet ik dan x=6 in de teller in vullen of in de noemer?ron
3-1-2007
De nulpunten van de afgeleide zijn x=-3 en x=6. Om nu te weten waar de grafiek van f extremen heeft moet je dus kijken naar het tekenverloop van de afgeleide.Vervolgens kan je voor de 4 verschillende gebieden bepalen of de afgeleide groter of kleiner is dan nul.
-----0----*----------0-----
-3 0 6
Doe hetzelfde voor bijvoorbeeld f'(-1), f'(1) en f'(7).
Een mogelijke kandidaat voor een extreem van f is dus alleen x=6, daar gaat dalen over in stijgen.
P.S. Ik vroeg me wel af van welke functie dit de afgeleide zou moeten zijn...
WvR
3-1-2007
#48336 - Functies en grafieken - Leerling bovenbouw havo-vwo