To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
Loading jsMath...

WisFaq!

\require{AMSmath} geprint op zondag 13 april 2025

Differentiequotient

ik heb een oefening gekregen van onze slechte leerkracht wiskunde. dat mens legt niks uit. nu heeft ze een oefening opgegeven die nergens eerder gemaakt is in ons boek en er zelfs geen voorbeeldoefening van gemaakt heeft. de formule is f(x)= -0,1x2 daar moet ik de \Deltax en de \Deltay van berekenen maar ook y=f(x) en de x. ook moeten we de kolom van interval en \Deltay/\Deltax.
help mij uit de nood!!

sarah van belle
3-12-2006

Antwoord

Hallo Sarah

De gegeven functie is dus : f(x) = y = -0,1.x2
\Deltax moet je niet berekenen, het is een willekeurige (maar niet te grote) verandering van x. Vermits f(x) = y afhangt van x, zal ook y veranderen indien x verandert. Deze verandering van y noemen we \Deltay

Stel nu x=1. Als deze x een verandering \Deltax ondergaat, is de overeenkomstige \Deltay gelijk aan het beeld in de nieuwe 1+\Deltax verminderd met het oorspronkelijke beeld in 1, dus \Deltay = f(1+\Deltax) - f(1)
Voor de gegeven functie is \Deltay =
-0,1.(1+\Deltax)2 - (-0,1.12) =
-0,1.[1 + 2\Deltax + (\Deltax)2 - 1] =
-0,1.[2\Deltax + \Delta2x]

Stel nu dat een willekeurige x-waarde een verandering van \Deltax ondergaat.
De overeenkomstige \Deltay is dan het beeld in deze nieuwe x+\Deltax, verminderd met het oorspronkelijke beeld in x, dus \Deltay = f(x+\Deltax) - f(x)
Toegepast op de gegeven functie is \Deltay =
-0,1.(x+\Deltax)2 - (-0,1.x2) =
-0,1.[x2 + 2x\Deltax + (\Deltax)2 - x2] =
-0,1.[2x\Deltax + \Delta2x]

Het differentiequotiënt \Deltay/\Deltax = -0,1.(2x + \Deltax) = -0,2x - 0,1\Deltax

Voor x=1 geldt dus \Deltay/\Deltax = -0,2 - 0,1\Deltax

Voor x=2 geldt \Deltay/\Deltax = -0,4 - 0,1\Deltax
Voor x=3 geldt dus \Deltay/\Deltax = -0,6 - 0,1 \Deltax
enz .......

LL
3-12-2006


© 2001-2025 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#47915 - Differentiëren - Overige TSO-BSO