WisFaq!

\require{AMSmath} geprint op maandag 25 november 2024

Formule van Simpson

Kunnen jullie aub deze formule vereenvoudigen? ik heb deze nodig in een toepassing en kan niet verder zonder alvast bedankt
cos2(æ/2)- sin2(æ/2)-cos2(ß/2)-sin2(ß/2) 
----------------------------------------
2cos(æ+ß) * sin(æ+ß)
2 2

kelly
14-10-2002

Antwoord

Je kunt aan je vraag zien, dat er wat onduidelijkheid is vanwege de opmaak. Wat doen die twee 2'tjes onderaan de formule???
Ik kan je tot zover ook maar voor de helft helpen, namelijk met de teller.

er geldt algemeen dat
cos(2x)=cos2x-sin2x, dus
cos2(½x)-sin2(½x)=cosx

verder ben je waarschijnlijk bekend met:
sin2x+cos2x=1, dus
-cos2(b/2)-sin2(b/2)=
-(cos2(b/2)+sin2(b/2)) = -1

m.a.w. in de teller staat cos(x) - 1

verder kan ik je t.a.v. de noemer meegeven dat
cos(a+b) = cosacosb -sinasinb, en
sin(a+b) = sinacosb + cosasinb

vanaf hier zou je 't zelf weer eens moeten proberen, of anders nog een keer je vraag posten, maar dan duidelijker omschreven wat er in de noemer staat.

groetjes,
martijn

mg
14-10-2002


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#4761 - Formules - 3de graad ASO