WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Raaklijn

Bepaal alle punten waarin de raaklijn aan de kromme (x + x2 - xy + y2 = 5) horizontaal is

dus dan is de y'(x0) = 0

dan heb ik impliciet afgeleidt:

1 + 2x - y -xy' + 2yy' = 0
y' (2y-x) = -1 -2x + Y
(-1 - 2x + y)/ 2y-x = 0
dus (-1 - 2x + y) moet nul zijn
dan is y = 2x+1
dat vul ik in in die kromme en dat geeft:

x+ x2 - x(2x+1) + (2x+1)2 = 5
3x2+4x-4= 0
x= -2 of x is 2/3 en y zou dan gelijk zijn aan respectievelijk -3 en 2/3
en als ik dan kijk bij de oplossingen van mijn prof zou ik
(-1+Ö3, -1 + 2Ö3) en (-1-Ö3, -1-2Ö3) moeten uitkomen. Dus ik denk dat ik iets grondig fout doe ofwel zijn de oplossingen van mijn prof verkeerd maar dat lijkt me erg onwaarschijnlijk :-). Dank bij voorbaat

Nicolas
24-10-2006

Antwoord

Beste Nicolas,

Misschien onwaarschijnlijk, maar niet onmogelijk; jouw oplossing is juist

Controleer maar eens door de opgegeven antwoorden in de vergelijking te substitueren, ze liggen niet eens op de kromme, laat staan dat de raaklijn er horizontaal kan zijn. Ook mogelijk: de opgave is verkeerd (doorgegeven) of die oplossingen zijn berekend voor een lichtjes andere opgave.

Met deze opgave is jouw oplossing correct en komt het ook nog "mooi" uit.

mvg,
Tom

td
24-10-2006


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#47295 - Analytische meetkunde - Student universiteit België