Ik snap nog niet helemaal het rekenen met grondtal e.
Neem deze opgave bijvoorbeeld:
Differentieer
f(x)= 2e^x + 1/x
Ik kom op: f'(x)= e^x - 1/x2
Maar volgens het antwoordenboek moet er nog een 2 voor.
Maar f(x)= a f'(x)= 0 ?
Dan de volgende opgave,
differentieer
f(x)=2e^x/x-1
Hier moet je volgens mij de quotientregel gebruiken, maar ik kom verkeerd uit.
Ik doe het volgende:
f'(x)= (x-1)2e^x-2e^x(x-1)/(x-1)2
Vervolgens maak ik van de teller:
(x-1-x-1)2e^x
(-2)2e^x
(-4)e^x
Maar volgens het antwoordenboek is de teller (2x-4)e^
Dus mijn tweede min zou een plus moeten zijn...
Ik snap niet precies waar ik wat verkeerd doe in mijn uitwerking.Lisanne
5-10-2006
Hallo
Inderdaad geldt: f(x) = a Þ f'(x) = 0
Maar ook : f(x) = a.x Þ f'(x) = a
en f(x) = a.g(x) Þ f'(x) = a.g'(x)
en f(x) = a.ex Þ f'(x) = a.ex
Voor een breuk geldt : (f/g)' = f'.g-f.g'/g2
met in je voorbeeld : g' = (x-1)' = 1
Je teller wordt dus (x-1)2ex-2ex.1
LL
5-10-2006
#46945 - Differentiëren - Leerling bovenbouw havo-vwo