WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Uniforme continuiteit van een functie f met begrensde afgeleide

Zij f:(a,b)$\to\mathbf{R}$ een differentieerbare functie met begrensde afgeleide.

Hoe moet je nu aantonen dat f uniform continu is?

Begin je met te zeggen dat |f'(x)|$\leq$K voor K$\in\mathbf{R}$ en 'x$\in\mathbf{R}$?

Of begin je met de definitie van uniforme continuiteit:
d(f(y),f(x))$<\epsilon$ als d(y,x)$<\delta$

Hoe begin je in het algemeen met een dergelijke vraag?

Jonas Teuwen
19-8-2006

Antwoord

Jonas,
Pas op [x,y] met axyb de middelwaardestelling toe.

kn
20-8-2006


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#46390 - Limieten - Student universiteit