WisFaq!

\require{AMSmath} geprint op donderdag 21 november 2024

Primitiveren cosinus

hoe kan je de primitiven krijgen van cos3(x).
op de formule kaart krijg je dat het antwoord moet zijn :
sin(x)- 1/3 sin3(x)

maar hoe kom je daarbij.
we weten dat de primitive van cos(x) is sin(x) maar voor de rest komen we er niet op uit.

Sander Mulder
1-5-2006

Antwoord

Je weet dat sin2x+cos2x=1, dus geldt dat cos2x=1-sin2x

als we nu kijken naar jouw probleem:
òcos3x.dx kunnen we dit dus schrijven als
òcosx.(cos2x)dx = òcosx(1-sin2x).dx = ò1-sin2xd(sinx)

en de primitieve hiervan is sinx - 1/3sin3x

groeten,

martijn

mg
1-5-2006


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#45161 - Integreren - Leerling bovenbouw havo-vwo