Hallo, ik heb sommen waar ik ze moet ontbinden in factoren. Bij simpele dingen zoals x2-y2 weet ik het wel, want dat is (x-y)(x+y)
Maar wat voor truuk kan je gebruiken bij deze soort:
2x3-x2-13x-6
Hoe kan ik dit het beste doen..?David
28-3-2006
Dit kan handig met de factorstelling. Je moet dan op zoek naar een waarde voor x zodat geldt:
2x3-x2-13x-6=0
Vaak is dat x=1, hier niet dus...
x=2? Nee...
x=3? Ja! 2·33-32-13·3-6=0
In dat geval kan je schrijven:
2x3-x2-13x-6=(x-3)(...)
Met behulp van een staartdeling kan je de veelterm op de puntjes vinden:x-3/2x3-x2-13x-6\2x2+5x+2Je ziet:
2x3-6x2
5x2-13x-6
5x2-15x
2x-6
2x-6
0
2x3-x2-13x-6=(x-3)(2x2+5x+2)
Dat tweede stuk kan je ook nog ontbinden... op dezelfde manier desnoods... dus kijken naar de oplossingen van 2x2+5x+2=0. Dat kan 'desnoods' zelf met de abc-formule...
2x3-x2-13x-6=(x-3)(2x+1)(x+2)
Zoals je ziet is dat nog niet zo eenvoudig als het lijkt. Als je een GR hebt kan je natuurlijk ook y1=2x3-x2-13x-6 nemen en de nulpunten aflezen. Als ze kan ontbinden komen ze mooi uit en dan ben je ook snel thuis...
WvR
28-3-2006
#44564 - Formules - Leerling onderbouw vmbo-havo-vwo