WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Re: Punt buiten driehoek berekenen

Ik heb het antwoord gelezen en nu heb ik een vraag die er sterk mee samenhangt: Als ik meerdere driehoeken aan elkaar wil plakken, heb ik plakrandjes nodig aan iedere kant. Als ik nu een driehoek heb met breedte b, hoogte h en plakrandje x. Wat worden dan de uiteindelijke afmetingen van de uit te knippen driehoek? Ik wil hiervoor graag een formule die als input heeft b, h en x en waar de uiteindelijke maten uitkomen. Ik wil dat deze formule voor alle soorten driehoeken geschikt is. Ik ben aan het stoeien geweest met goniometrie, maar ik kom er niet uit. Ik ben heel benieuwd...

Machiel Karels
25-3-2006

Antwoord

Ik ben bang dat je driehoek niet vastligt als je alleen de breedte en de hoogte hebt. Dus in deze zin kan ik je vraag niet beantwoorden.

Wat wel kan is:
Ga uit van een driehoek met drie bekende zijden: a, b en c. (de binnenste driehoek)
De halve omtrek s is dan 1/2(a+b+c)
Volgens inscribed circle is de straal van de ingeschreven cirkel van je driehoek dan gelijk aan de oppervlakte gedeeld door s.
Maar volgens Wat is de formule van Heroon? is de oppervlakte juist gelijk aan Ö(s*(s-a)*(s-b)*(s-c)).
Combineren we deze twee dan geldt voor de straal R van de ingeschreven cirkel: R=Ö((s-a)(s-b)(s-c)/s).
Voor de buitenste driehoek (die met de plakrandjes) is de straal van de ingeschreven cirkel gelijk aan R+x.
De zijden van de buitenste driehoek (met plakrandjes) zijn dan:
a'=(R+x)/R*a
b'=(R+x)/R*b
c'=(R+x)/R*c

hk
25-3-2006


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#44511 - Ruimtemeetkunde - Iets anders