WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Vlakken en hoeken

Gegeven zijn de vlakken U: (x1,x2,x3)= (0,2,1)+ $\lambda$(1,1,2) + $\mu$(1,0,1)
Vlak V: 2x1 -3x3 = 1
Vlak W: x1 + x2 + x3= 17

a. Bepaal een vergelijking van het vlak door de snijlijn van de vlakken U en V dat ook loodrecht staat op vlak VW.
b. Bereken de hoek die de vlakken U en V met elkaar maken.

Mijn berekeningen:

a. Snijlijn van U en V
2($\lambda$+$\gamma$) -3(1+2$\lambda$+$\mu$)= 1 $\Leftrightarrow$
$\mu$= -4-4$\lambda$
Invullen in U :
(x1,x2,x3)= (-4,2,-3) + $\lambda$(-3,1,-2)
En nu...???

b. Vlak U is x1 +x2 -x3 = 1 met normaalvector n: (1,1,-1)
Vlak V m: (2,0,-3)
cos $\gamma$ = abs($<$n,m$>$) / (abs n · abs m)
Invullen levert op:
cos $\gamma$ = 5 / √39
Maar wat is nu het antwoord?

Wie helpt me verder?
BVD

Tjen
14-2-2006

Antwoord

dag Tjen,

Ik neem aan (bij a) dat het gezochte vlak loodrecht staat op W.(typfoutje?)
Dat betekent, dat de normaalvector van W een richtingsvector is van het gezochte vlak.
Verder is de richtingsvector van jouw snijlijn ook een richtingsvector van het gezochte vlak.
De steunvector van je snijlijn is een steunvector van het gezochte vlak.
Dan moet je de vergelijking kunnen opstellen, toch?

bij vraag b:
De hoek tussen de twee vlakken is gelijk aan de hoek $\gamma$, waarvan je de cosinus al berekend hebt. Om nu $\gamma$ zelf te berekenen, hoef je dus alleen nog maar de inverse van de cosinus toe te passen op 5/√39
(dus arccos of bgcos, net hoe je het gewend bent...)
succes,

Anneke
15-2-2006


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#43683 - Ruimtemeetkunde - Student hbo