Hallo,
Ik moet de volgende vergelijking ontbinden in factoren:
x3 + 5x2 - 12x -4
Ik gebruik hiervoor de theorie van horner.
Om het nulpunt te lokaliseren neem ik de delers van de constante term. Dit zijn: -4, 4, -2, 2, 1, -1
x=2 komt er dan uit als nulpunt. Bij deze vergelijking moet je dus a=2 invullen in de tabel van horner.
Maar nu een andere vergelijking:
Bv. x3 -7x - 6
Dan zijn de delers: 1, -1, 2, -2, 3, -3, 6, -6
Nu komt x=-3 eruit als nulpunt, maar je moet a=3 invullen in de tabel van horner.
Mijn vraag is nu, waarom is bij de eerste vergelijking x=a=2 en bij de tweedevergelijking x=-3 en a=3? Ofterwijl wat zijn de regels hiervoor?
Alvast bedankt.
Jeffrey
7-2-2006
x=-3 is geen nulpunt van de tweede veelterm!
Ga maar na: (-3)3-7·-3-6=-27+21-6¹0
x=3 echter wel....
33-7·3-6=0
Dus geen probleem dan...
WvR
7-2-2006
#43543 - Vergelijkingen - Student hbo