Hallo
Hoe moet je 1.1!+2.2!+3.3!+...+n.n! oplossen?
ik dacht aan een patroon te zoeken en dan de somformulle van een rij, maar dit lukte niet.
alvast bedankt
MaartenMaarten
29-1-2006
Je hebt een rijtje dat als volgt gedefinieerd is:
xi=i.i!
We gaan dit met een truckje omvormen.
Je ziet in dat i.i!=(i+1-1).i! (ik heb gewoon +1-1 gedaan, wat dus +0 is en er verandert niets)
Maar je kan door distributiviteit te doen (i+1-1).i! = (i+1).i! - i! = (i+1)!-i! schrijven
We hebben dus dat xi= i.i! = (i+1)!-i!
De formule die je zoekt is de som van de eerste n xi's
Je hebt dus de volgende som:
1.1!+2.2!+3.3!+...+(n-1).(n-1)! + n.n! die door wat we net gedaan hebben gelijk is aan
(1+1)!-1!
+
(2+1)!-2!
+
(3+1)!-3!
+...+
(n)! - (n-1)!
+
(n+1)! - (n)!
=
2!-1!
+
3!-2!
+...+
(n)! - (n-1)!
+
(n+1)! - (n)!
Je ziet dat er een heleboel termen tegenover elkaar wegvallen. Het enige wat overblijft is (n+1)!-1 (want vanaf 2! komt i! telkens eens met een + en eens met een - voor in de som, dus dat valt weg. Alleen -1! en (n+1)! komen maar 1 keer voor in het sommetje)
We hebben dus dat
1.1!+2.2!+3.3!+...+n.n! = (n+1)!-1
Succes,
Koen
km
29-1-2006
#43354 - Telproblemen - 3de graad ASO