hallo ,
ik moet bewijzen dat de afgeleide in een punt op een stijgende functie = 0
nu dacht ik te argumenteren dat als een functie stijgend is dat dan geldt : als xy dat dan f(x) f(y)
als we dus f(x)-f(y) nemen zal dit positief zijn en vermits de limiet de orde bewaart zal lim voor y naar x van f(x) -f(y) / x-y ook positief zijn.
daarmee zou dit bewezen zijn
alleen vroeg ik mij af of dit wel een geldig bewijs zou zijn moest het gevraagd worden ?
zou iemand mij hierop kunnen antwoorden ?
bedankt,
josjos
16-1-2006
Je bewijs is in essentie goed maar er ontbreekt nogal wat aan de presentatie.
Je moet goed afspreken wat je met `stijgend' bedoelt.
Mogelijkheid 1: als xy dan f(x)f(y)
Mogelijkheid 2: als xy dan f(x)f(y)
Het hangt een beetje van het boek af dat je gebruikt maar sommigen noemen 1 stijgend en 2 strikt stijgend; anderen zeggen bij 1 `niet-dalend' en bij 2 gewoon `stijgend'. Zeg dus altijd wat je bedoelt.
Maar goed, in beide gevallen geldt voor elk tweetal punten x en y met x¹y dat (f(y)-f(x))/(y-x)0 (denk om de haakjes). Neem nu x vast een neem de limiet voor y naar x; omdat alle quotienten 0 zijn is de limiet dat ook.
kphart
20-1-2006
#43020 - Bewijzen - Student universiteit België