WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Raaklijnen loodrecht

Ik moet bewijzen dat de beide raaklijnen vanuit een punt op de richtlijn loodrecht op elkaar staan.
De parabool is 1/2cy=x2
De richtlijn y=-1/8c
Nu dacht ik: ik neem het punt (0,-1/8c) op de richtlijn en die vul ik dan in de raaklijn formule in (yy=cx+cx). Dan zouden er toch twee formules uit moeten komen...?? waarbij de rico's vermenigvuldigd -1 moeten zijn?
Is dit wel een goede gedachtengang, want ik kom aan y= 8c2x, als ik het punt invul

iris
6-1-2006

Antwoord

Het is handiger om een willekeurig punt P op de parabool te nemen. Als je vanuit dit punt de lijn door het brandpunt neemt en snijdt met de parabool, dan heb je een tweede punt Q. De tweede raaklijn gaat dan door Q en staat loodrecht op de eerste (waarom?). Bepaal vervolgens de raaklijnen in beide punten. Snijdt beide raaklijnen en toon aan dat het snijpunt op de richtlijn ligt... zou moeten kunnen.. heb ik gehoord...

WvR
8-1-2006


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#42713 - Analytische meetkunde - Student hbo