Hallo wisfaq,
Bescouw het volgende Lienard systeem
x'=y-x^3+ax
y'=-x
Ik wil bepalen voor welke waarden van a er geen periodieke oplossingen bestaan en voor welke a wel.
Om aan te tonen dat het systeem geen per opl'n heeft moet ik het kriterium van Bendixson gebruiken:
Beschouw het systeem
x'=f(x,y)
y'=g(x,y)
en D is bevat in R^2 (R reele getallen)
Neem aan dat D eenvoudig samenhangend is en dat (f,g) continu differentieerbaar is in D.Het bovenstaande systeem kan alleen periodieke oplossingen hebben als div(f,g) van teken veranderd in D of als div(f,g)=0 in D.
div(x',y')=-3x^2+a.Ik heb een gebied D nodig die aan de voorwaarden van het kriterium voldoet zodat ik het krit kan toepassen maar ik weet niet hoe ik deze D kan vinden.
Groeten,
Viky
viky
12-12-2005
Gewoon: kijken waar div(x',y') tekenvast is. Als a0 is dat overal want -3x2+a is dan altijd negatief (dus D=R2). Als a0 kun je voor D de strook bepaald door -sqrt(a/a)xsqrt(a/3) nemen, die is enkelvoudig samenhangend en div is op die hele D positief.
kphart
14-12-2005
#42219 - Differentiaalvergelijking - Student hbo