WisFaq!

\require{AMSmath} geprint op maandag 25 november 2024

Toepassing Integraaltest Cauchy

De vraag is:

voor welke waarde van p convergeert de reeks. Ik snap dat je het moet oplossen door het te integreren, maar hoe dat precies gaat en wat je daarbij moet doen lukt mij echt niet ...

¥
å 1/n·lnpn
n=2

Robert
29-11-2005

Antwoord

Volgens de integraaltest (zie bv mathworld) geldt:
Als je een reeks hebt met positieve termen, en de functie die ontstaat door n door x te vervangen is continu en gaat naar nul, dan hebben de som van de reeks en de integraal van de functie hetzelfde convergentiegedrag. In deze oefening is aan alle voorwaarden voldaan voor elke waarde van p (zelfs voor negatieve waarden, terwijl het dan nochtans niet op het zicht duidelijk is dat de functie naar nul gaat)

Hier moet je dus kijken naar de convergentie van ò(1/(x lnpx)) dx waarbij de integraal loopt van 2 tot oneindig.
De substitutie lnx = u maakt hiervan een makkelijke integraal, namelijk
òdu/up
Als p=1 kan je die oplossen, als p¹1 ook. Dan rest alleen nog na te gaan wanneer de uitkomst eindig, dan wel oneindig is. Ik kwam uit op:
- divergentie voor p1
- convergentie voor p1

Groeten,
Christophe.

Christophe
4-12-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#41889 - Rijen en reeksen - Student universiteit