WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Derde afgeleide tangens

Beste meneer/mevrouw

Ik zou graag willen weten wat de derde afgeleide is van de tangensfunctie. De eerste afgeleide staat nog op mijn formulekaart, maar ik weet niet goed hoe ik daarna verder moet.

Groetjes Greetje

Greetje
20-11-2005

Antwoord

Hallo Greetje

De afgeleide van de tangens is: D(tanx) = 1/cos2x = cos-2x

Dit nogmaals afleiden geeft de tweede afgeleide van de tangens :
D(cos-2x) =
-2.cos-3x.D(cosx) =
2sinx.cos-3x =
2sinx/cos3x

De afgeleide hiervan is tenslotte de derde afgeleide van de tangens :
D(2sinx.cos-3x) =
2[D(sinx).cos-3x + sinx.D(cos-3x) =
2[cosx.cos-3x + sinx.(-3)cos-4x.(-sinx)] =
2cos-4x[cos2x + 3sin2x] =
2cos-4x[1+2sin2x] =
2(1+2sin2x)/cos4x

LL
20-11-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#41668 - Differentiëren - Student hbo