WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Toepassing op methode van onbepaalde coëfficiënten

Bepaal een veelterm V(z) met graad 2 waarvan 2 een nulpunt is en waarvoor geldt: V(1)= -10
V(-1)= -12

Dit moeten we oplossen met de methode van de onbepaalde coëfficiënten. Ik heb de theorie in mijn boek doorgelezen, maar het is me niet echt duidelijk hoe ik hier aan moet beginnen. Ik weet dat de veelterm van de vorm V(z)= az2+bz+c moet zijn. Moet ik dan beginnen met behulp van het nulpunt van deze veelterm te berekenen wat a, b en c zijn?
In elk geval had ik dat geprobeerd en ik kwam dit uit: R=V(2)=0 = 4a+2b+c=0
= 4az+2bz+c=0

Op dat moment zit ik vast. Ik snap de methode van de onbepaalde coëfficiënten niet echt. Kunnen jullie me dat eens een beetje uitleggen?

Alvast bedankt!!!

Katrien
14-11-2005

Antwoord

Algemene gedaante tweedegraadsfunctie met nulpunt 2: V(x)=a·(x-2)·(x+b)
V(1)=a·-1·(1+b)=-ab-a=-10
V(-1)=a·-3·(-1+b)=-3ab+3a=-12 Û -ab+a=-4
Uit de laatste 2 volgt: 2a=6 ofwel a=3 dan is b=7/3
dus V(x)=3·(x-2)·(x+7/3)=(x-2)·(3x+7).
Nu even zelf controleren of dat ook klopt.

Of dat de methode met onbepaalde coëfficiënten is ??? Maar het werkt en volgens mij kan het ook niet echt makkelijker.

Met vriendelijke groet
JadeX

jadex
14-11-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#41556 - Formules - 3de graad ASO