WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Straal van de ingeschreven cirkel

Van een driehoek ABC is de oppervlakte gelijk aan 300 cm2, de omtrek is 300 cm, bereken de straal van de ingeschreven cirkel?

petronella
16-8-2002

Antwoord

Als je vanuit het middelpunt van de ingeschreven cirkel verbindingslijnstukken trekt naar de 3 hoekpunten, dan splits je de hele driehoek op in 3 deeldriehoeken.



In elk van deze 3 driehoeken is de straal r van de ingeschreven cirkel meteen ook de hoogtelijn.

De oppervlakten van de 3 deeldriehoeken zijn dan resp.

$\frac{1}{2}·AB·r$ en $\frac{1}{2}·BC·r$ en $\frac{1}{2}·AC·r$

Bij elkaar opgeteld is dit $\frac{1}{2}·r·(AB + BC + AC)$ ofwel $\frac{1}{2}·r·omtrek$

Maar tevens is de optelsom van de oppervlakten van de 3 deeldriehoeken natuurlijk óók gelijk aan de oppervlakte $O$ van de volledige driehoek.

Conclusie: $\frac{1}{2}·r·omtrek = O$ ofwel $\eqalign{r=\frac{O}{halve\,\,omtrek}}$

MBL
16-8-2002


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#4025 - Vlakkemeetkunde - Student hbo