WisFaq!

\require{AMSmath} geprint op maandag 25 november 2024

Sommatie

hoe los ik deze sommatie oefening op?,geraak er niet uit
ån=20 ,k=1 (3k+2)
dank je wel alvast

zelfstudie wiskunde, ma gaat traag

kuscu
9-8-2005

Antwoord

Hallo

De opgave is wel tamelijk onduidelijk, ik ga uit van de volgende opgave:

å(k=1®20) [3k+2]
= å(k=1®20) [3k] + å(k=1®20) [ 2 ]
= 3 * å(k=1®20) [k] + 20 * 2
= 3 * ( å(k=1®20) [k] ) + 40

De som å(k=1®20) [k] is 't enige dat je nog moet uitrekenen. Het is de som van een rekenkundige rij die je kan uitrekenen als volgt:

å(k=1®20) [k] = 1+2+3+4+...+19+20

MAAR, dit hoef je niet zo te doen , want er bestaat een formuletje voor:

å(k=1®n) [uk] = n/2 ( u1 + un )
met n het aantal termen, u1 de eerste term & un de laatste term.

Zoek zelf eens uit hoe je de formule kan gebruiken voor jouw oefening. Over wat een rekenkundige rij precies is, kan je hier een goede uitleg vinden.

Groetjes

Igor
9-8-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#39890 - Rijen en reeksen - Iets anders