Hallo,
5n = 4 k(n) + 1
k(n) is dus een 'onbepaald' geheel getal?
of staat dit rechtstreeks in verband met n?
ik had het ook gevonden tot daar
maar ik had k(n) q genoemd (qÎ)
5n = 4 q + 1
a)daarna bewijzen voor 1
5 = 4 q + 1
als q = 1 (Î) dan klopt het
b)5n+1 = 4 q + 1
5n+1 = 5 5n
dus:
5 5n = 4 q + 1
5n = (4q + 1)/(5) (qÎ)
maar hoe kan je nu bewijzen:
$qÎ: 5n = (4q + 1)/(5) [nÎ;0)]
slaat dit tot nu toe ergens op of niet ?
merci!
Jeroen
6-7-2005
Jeroen,
Voor n naar n+1:
5n+1=5(5n)= inductie veronderstelling=5(4k(n)+1)= 20k(n)+4+1=4(5k(n)+1)+1=4k(n+1)+1 met
k(n+1)=5k(n)+1 .
Groetend,
kn
6-7-2005
#39692 - Bewijzen - 3de graad ASO