WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Annuiteitenhypotheek

In het algemeen is an= 1,004.an-1 met beginterm a0
leid uit deze recursie formule de directe formule af van an ,
dit heb ik gedaan ik kwam hier op
(1,004)n-1.a0.

Dan moet ik nog aantonen dat Sn = a0 (1-1,004n+1) / -0,004
Daar kom ik niet uit, want ik weet niet welke getallen ik moet gebruiken
hopelijk kunt u mij verder helpen

Rick Waals
5-7-2005

Antwoord

De beginterm a0 zal wel horen bij rangnummer n=0.
De rangnummerformule wordt dan an=1,004n×a0.
Het betreft hier een meetkundige rij met reden 1,004.
Voor Sn kun je dan de somformule voor een meetkundige rij gebruiken.
Deze is in verschillende gedaantes bekend. Erg makkelijk is de woordformule:
(eerstvolgendeterm-eersteterm)/(reden-1)
De eerstvolgende term is in dit geval an+1=a01,004n+1. De eerste term is a0.
We krijgen dan (a0.1,004n+1-a0)/(1,004-1).
Dit kun je herschrijven tot: a0(1,004n+1-1)/0,004=a0(1-1,004n+1)/-0,004

hk
5-7-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#39682 - Wiskunde en economie - Leerling bovenbouw havo-vwo