WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Stabiele toestand bepalen met vergelijkingen

De vraag is hoe een stabiele toestand van een Marakov keten bepaald kan worden uit twee vergelijkingen. De vergelijkingen zijn:
0,2A + 0,8B = A
0,7A + 0,3B = B
A + B = 1

De oplossing is A=0,467 B=0,533
Hoe is tot deze oplossing gekomen?

Luc
8-6-2005

Antwoord

Beste Luc,

Je zegt dat we de stabiele toestand willen bepalen uit twee vergelijkingen maar je geeft er drie...

Uit A + B = 1 volgt dat B = 1 - A. Als we dit in vgl 1 invullen krijgen we:
0.2A + 0.8B = A
= 0.2A + 0.8(1-A) = A
0.2A + 0.8 - 0.8A - A = 0
-1.6A = -0.8
A = 0.8/1.6 = 1/2

Uit vgl 3 volgt dat dan B dan ook 1/2 moet zijn. Controle in vgl 2:
0.7(1/2) + 0.3(1/2) = 0.35 + 0.15 = 0.5 = B = klopt.

De 3 vgl waren dus wel lineair afhankelijk en we vinden als oplossing:
A = B = 1/2

mvg,
Tom

td
8-6-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#39087 - Vergelijkingen - Student hbo