WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Bepaal de cartesische vergelijking

Hoi,
Ik zou graag jullie hulp willen in verband met de volgende opgaven:
1) Bepaal de cartesische vergelijking van het vlak door P(1,0,3) en evenwijdig met de rechten a en b.
a: 2x + y + z + 1 =0
x - y + z = 0
b: (x-3)/4 = (y-2)/2 = z + 1

2)Bepaal de cartesische vergelijking van de loodlijn uit P(-1,2,3) op het vlak a.
a: 2x + 3y - z + 1 = 0

Ik weet dat het nogal veel gevraagd is, maar ik heb zeer binnenkort examen, ik studeer op mezelf en in mijn boeken staat het niet duidelijk uitgelegd...
Alvast bedankt..dankzij jullie leef ik op hoop
Elia.

Elia
2-6-2005

Antwoord

Beste Elia,

1) Een vlak is bepaald als je 3 gegevens hebt (onder 'gegevens' versta ik ofwel punten ofwel richtingsvectoren).
Een punt is gegeven, dat is al 1. Van beide rechten kan je een richtingsvector zoeken, dan heb je ook 2 richtingsvectoren voor je vlak en is dus ook de evenwijdigheid in orde, dat zijn er 2.
Uit rechte b kan je de richtingsvector direct aflezen, de noemers zijn immers de richtingsgetallen hier.
Rechte a zal je eerst in vectoriële- of parametervorm moeten schrijven en dan kan je ook daar de richtingsvector uithalen.

Het opstellen van de vergelijking kan dan handig m.b.v. een (4x4) determinant. Schrijf als eerste rij x y z 1 en dan per gegeven een nieuwe rij. Een stel richtingsgetallen (richtingsvector) krijgt een 0 in de laatste kolom en een punt krijg er een 1. Ontwikkelen naar de eerste rij geeft je dan de vergelijking.


2) Het opstellen van de vectoriële vergelijking gaat heel eenvoudig, daar heb je alleen een punt voor nodig (en dat heb je) en een richtingsvector. Maar je weet dat de rechte loodrecht op het vlak moet zijn, dus is de normaalvector van het vlak een richtingsvector. Vermits de coëfficiënten van je vlak de normaalvector vormen, heb je het al bijna!

Vectorieel is de rechte dus: (-1,2,3)+k(2,3,-1)
Dit kan je evt. in een stelsel zetten en de uitdrukkingen voor x, y en z apart schrijven (dit is eigenlijk de parametervgl). Elimineren van k geeft je de carthesische vergelijking.

mvg,
Tom

td
2-6-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#38881 - Ruimtemeetkunde - 3de graad ASO