WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Afgeleiden van vierdegraads functies of hoger

kunnen ook bij andere dan tweede of derde graadsfuncties Fp de toppen van de grafieken een verzameling vormen waarvan je een formule kunt opstellen. je hebt bijvoorbeeld formule y=x4 + px3, kun je dan zo een formule vinden, en zo ja hoe doe je dit dan want ik snap het niet helemaal ,
alvast bedankt!

Esra
28-5-2005

Antwoord

Ja hoor dat kan als volgt:

We hebben f(x)=x4+px3
Differentieren levert f'(x)=4x3+3px2.
Voor een top moeten we f'(x) gelijk stellen aan nul. We krijgen dan de vergelijking 4x3+3px2=0.
Dus x2(4x+3p)=0
x=0 of 4x+3p=0.

De makkelijkste manier is nu: los de vergelijking 4x+3p=0 op naar p.
Dat levert 3p=-4x, dus p=-4/3x.
Vul deze oplossing in in het functievoorschrift van f, dan krijg je
y=x4+-4/3x×x3
y=x4-4/3x4
y=-1/3x4 en dit is dan een vergelijking van de verzameling van toppen.

Hieronder een plaatje met een aantal exemplaren van de familie van functies met hun toppen en (in rood) de grafiek van y=-1/3x4
q38680img1.gif

hk
28-5-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#38680 - Differentiëren - Leerling bovenbouw havo-vwo